Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5148, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429351

RESUMO

Colistin remains one of the last-resort therapies for combating infections caused by multidrug-resistant (MDR) Enterobacterales, despite its adverse nephro- and neuro-toxic effects. This study elucidates the mechanism of action of a non-antibiotic 4-anilinoquinazoline-based compound that synergistically enhances the effectiveness of colistin against Salmonella enterica. The quinazoline sensitizes Salmonella by deactivating intrinsic, mutational, and transferable resistance mechanisms that enable Salmonella to counteract the antibiotic impact colistin, together with an induced disruption to the electrochemical balance of the bacterial membrane. The attenuation of colistin resistance via the combined treatment approach also proves efficacious against E. coli, Klebsiella, and Acinetobacter strains. The dual therapy reduces the mortality of Galleria mellonella larvae undergoing a systemic Salmonella infection when compared to individual drug treatments. Overall, our findings unveil the potential of the quinazoline-colistin combined therapy as an innovative strategy against MDR bacteria.


Assuntos
Mariposas , Infecções por Salmonella , Animais , Colistina/farmacologia , Colistina/uso terapêutico , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Infecções por Salmonella/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
Cancer Immunol Immunother ; 71(9): 2141-2150, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35061085

RESUMO

Salmonella-based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical use.  Here, we deepened into the role of macrophages and inflammasome activation in the context of Salmonella anti-melanoma effect. We showed inflammasome activation in melanoma cells upon infection, which correlated with cell surface exposure of gasdermin-D (GSDM-D) and calreticulin (CRT) and High mobility group box 1 protein (HMGB-1) release, suggesting immunogenic cell death, particularly pyroptosis. Salmonella infection upregulated levels of Caspase-11 (Casp11) mRNA, but not Nlrp3 or Nlrc4 mRNA, the only described inflammasome receptors engaged by Salmonella, suggesting that non-canonical inflammasome activation could be occurring in melanoma cells. Intratumoral administration of Salmonella to melanoma-bearing mice elicited local inflammasome activation and interleukin-1ß (IL-1ß) production together with tumor growth retardation and extended survival in wild type but not Caspase-1/11 (Casp1/11) knockout mice despite similar levels of intratumoral IL-1ß in the later. Salmonella antitumor activity was also suppressed in melanoma bearing Nlrp3 knockout mice. Salmonella induced macrophage recruitment to the tumor site and infiltrating cells exhibited inflammasome activation. Depletion experiments confirmed that macrophages are also essential for Salmonella anti-melanoma effect. Intratumoral macrophages showed a marked M2/M1 shift soon after treatment but this inflammatory profile is then lost, which could explain the transient effect of therapy.  All in all, our results highlight CASP-1/11 axis and macrophages as essential players in Salmonella-based cancer immunotherapy and suggest a possible target for future interventions.


Assuntos
Inflamassomos , Macrófagos , Neoplasias , Salmonella , Animais , Caspase 1/metabolismo , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neoplasias/imunologia , Neoplasias/terapia , RNA Mensageiro/metabolismo , Microambiente Tumoral
4.
Sci Signal ; 13(628)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317368

RESUMO

The Salmonella enterica PhoP/PhoQ two-component signaling system coordinates the spatiotemporal expression of key virulence factors that confer pathogenic traits. Through biochemical and structural analyses, we found that the sensor histidine kinase PhoQ acted as a receptor for long-chain unsaturated fatty acids (LCUFAs), which induced a conformational change in the periplasmic domain of the PhoQ protein. This resulted in the repression of PhoQ autokinase activity, leading to inhibition of the expression of PhoP/PhoQ-dependent genes. Recognition of the LCUFA linoleic acid (LA) by PhoQ was not stereospecific because positional and geometrical isomers of LA equally inhibited PhoQ autophosphorylation, which was conserved in multiple S. enterica serovars. Because orally acquired Salmonella encounters conjugated LA (CLA), a product of the metabolic conversion of LA by microbiota, in the human intestine, we tested how short-term oral administration of CLA affected gut colonization and systemic dissemination in a mouse model of Salmonella-induced colitis. Compared to untreated mice, CLA-treated mice showed increased gut colonization by wild-type Salmonella, as well as increased dissemination to the spleen. In contrast, the inability of the phoP strain to disseminate systemically remained unchanged by CLA treatment. Together, our results reveal that, by inhibiting PhoQ, environmental LCUFAs fine-tune the fate of Salmonella during infection. These findings may aid in the design of new anti-Salmonella therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Ácido Linoleico/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Transdução de Sinais , Animais , Proteínas de Bactérias/genética , Feminino , Histidina Quinase/genética , Ácido Linoleico/genética , Camundongos , Fosforilação , Infecções por Salmonella/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade
5.
Sci Rep ; 10(1): 3638, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32109937

RESUMO

Salmonella enterica serovar Enteritidis is a major cause of foodborne disease in Uruguay since 1995. We used a genomic approach to study a set of isolates from different sources and years. Whole genome phylogeny showed that most of the strains are distributed in two major lineages (E1 and E2), both belonging to MLST sequence type 11 the major ST among serovar Enteritidis. Strikingly, E2 isolates are over-represented in periods of outbreak abundance in Uruguay, while E1 span all epidemic periods. Both lineages circulate in neighbor countries at the same timescale as in Uruguay, and are present in minor numbers in distant countries. We identified allelic variants associated with each lineage. Three genes, ycdX, pduD and hsdM, have distinctive variants in E1 that may result in defective products. Another four genes (ybiO, yiaN, aas, aceA) present variants specific for the E2 lineage. Overall this work shows that S. enterica serovar Enteritidis strains circulating in Uruguay have the same phylogenetic profile than strains circulating in the region, as well as in more distant countries. Based on these results we hypothesize that the E2 lineage, which is more prevalent during epidemics, exhibits a combination of allelic variants that could be associated with its epidemic ability.


Assuntos
Proteínas de Bactérias/genética , Surtos de Doenças , Filogenia , Infecções por Salmonella , Salmonella enteritidis/genética , Humanos , Tipagem de Sequências Multilocus , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/genética , Salmonella enteritidis/isolamento & purificação , Uruguai/epidemiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31611347

RESUMO

The rapid emergence of multidrug resistance among bacterial pathogens has become a significant challenge to human health in our century. Therefore, development of next-generation antibacterial compounds is an urgent need. Two-component signal transduction systems (TCS) are stimulus-response coupling devices that allow bacteria to sense and elaborate adaptive responses to changing environmental conditions, including the challenges that pathogenic bacteria face inside the host. The differential presence of TCS, present in bacteria but absent in the animal kingdom, makes them attractive targets in the search for new antibacterial compounds. In Salmonella enterica, the PhoP/PhoQ two-component system controls the expression of crucial phenotypes that define the ability of the pathogen to establish infection in the host. We now report the screening of 686 compounds from a GlaxoSmithKline published kinase inhibitor set in a high-throughput whole-cell assay that targets Salmonella enterica serovar Typhimurium PhoP/PhoQ. We identified a series of quinazoline compounds that showed selective and potent downregulation of PhoP/PhoQ-activated genes and define structural attributes required for their efficacy. We demonstrate that their bioactivity is due to repression of the PhoQ sensor autokinase activity mediated by interaction with its catalytic domain, acting as competitive inhibitors of ATP binding. While noncytotoxic, the hit molecules exhibit antivirulence effect by blockage of S Typhimurium intramacrophage replication. Together, these features make these quinazoline compounds stand out as exciting leads to develop a therapeutic intervention to fight salmonellosis.


Assuntos
Quinazolinas/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Salmonella typhimurium/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Virulência/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-30533879

RESUMO

Multidrug-resistant Salmonella enterica isolates are an increasing problem worldwide; nevertheless, the mechanisms responsible for such resistance are rarely well defined. Multidrug-resistant S. enterica serovar Typhimurium isolates ST3224 and ST827 were collected from two patients. The characteristics of both genomes and antimicrobial resistance genes were determined using next-generation sequencing.

9.
Microb Genom ; 4(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29509137

RESUMO

Salmonella enterica serovar Enteritidis is a major agent of foodborne diseases worldwide. In Uruguay, this serovar was almost negligible until the mid 1990s but since then it has become the most prevalent. Previously, we characterized a collection of strains isolated from 1988 to 2005 and found that the two oldest strains were the most genetically divergent. In order to further characterize these strains, we sequenced and annotated eight genomes including those of the two oldest isolates. We report on the identification and characterization of a novel 44 kbp Salmonella prophage found exclusively in these two genomes. Sequence analysis reveals that the prophage is a mosaic, with homologous regions in different Salmonella prophages. It contains 60 coding sequences, including two genes, gogB and sseK3, involved in virulence and modulation of host immune response. Analysis of serovar Enteritidis genomes available in public databases confirmed that this prophage is absent in most of them, with the exception of a group of 154 genomes. All 154 strains carrying this prophage belong to the same sequence type (ST-1974), suggesting that its acquisition occurred in a common ancestor. We tested this by phylogenetic analysis of 203 genomes representative of the intraserovar diversity. The ST-1974 forms a distinctive monophyletic lineage, and the newly described prophage is a phylogenetic signature of this lineage that could be used as a molecular marker. The phylogenetic analysis also shows that the major ST (ST-11) is polyphyletic and might have given rise to almost all other STs, including ST-1974.


Assuntos
DNA Bacteriano/isolamento & purificação , Filogenia , Prófagos/isolamento & purificação , Salmonella enteritidis/isolamento & purificação , DNA Bacteriano/genética , Marcadores Genéticos , Genoma Bacteriano , Tipagem de Sequências Multilocus , Prófagos/genética , Salmonella enteritidis/genética , Sorogrupo , Uruguai
10.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061704

RESUMO

Salmonella enterica serovar Dublin is adapted to cattle but is able to infect humans with high invasiveness. An acute inflammatory response at the intestine helps to prevent Salmonella dissemination to systemic sites. Flagella contribute to this response by providing motility and FliC-mediated signaling through pattern recognition receptors. In a previous work, we reported a high frequency (11 out of 25) of S Dublin isolates lacking flagella in a collection obtained from humans and cattle. The aflagellate strains were impaired in their proinflammatory properties in vitro and in vivo The aim of this work was to elucidate the underlying cause of the absence of flagella in S Dublin isolates. We report here that class 3 flagellar genes are repressed in the human aflagellate isolates, due to impaired secretion of FliA anti-sigma factor FlgM. This phenotype is due to an in-frame 42-nucleotide deletion in the fliE gene, which codes for a protein located in the flagellar basal body. The deletion is predicted to produce a protein lacking amino acids 18 to 31. The aflagellate phenotype was highly stable; revertants were obtained only when fliA was artificially overexpressed combined with several successive passages in motility agar. DNA sequence analysis revealed that motile revertants resulted from duplications of DNA sequences in fliE adjacent to the deleted region. These duplications produced a FliE protein of similar length to the wild type and demonstrate that amino acids 18 to 31 of FliE are not essential. The same deletion was detected in S Dublin isolates obtained from cattle, indicating that this mutation circulates in nature.


Assuntos
Proteínas de Bactérias/genética , Flagelos/genética , Salmonella enterica/genética , Deleção de Sequência/genética , Sequência de Aminoácidos , Aminoácidos , Animais , Corpos Basais/metabolismo , Sequência de Bases , Bovinos , Feminino , Genes Duplicados/genética , Humanos , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Salmonelose Animal/microbiologia , Alinhamento de Sequência , Fator sigma/genética
11.
PLoS One ; 12(12): e0189946, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267322

RESUMO

In this study, different molecular typing tools were applied to characterize 95 Salmonella enterica blood isolates collected between 2008 and 2013 from patients at nine public hospitals in Lima, Peru. Combined results of multiplex PCR serotyping, two- and seven-loci multilocus sequence typing (MLST) schemes, serotyping, IS200 amplification and RAPD fingerprints, showed that these infections were caused by eight different serovars: Enteritidis, Typhimurium, Typhi, Choleraesuis, Dublin, Paratyphi A, Paratyphi B and Infantis. Among these, Enteritidis, Typhimurium and Typhi were the most prevalent, representing 45, 36 and 11% of the isolates, respectively. Most isolates (74%) were not resistant to ten primarily used antimicrobial drugs; however, 37% of the strains showed intermediate susceptibility to ciprofloxacin (ISC). Antimicrobial resistance integrons were carried by one Dublin (dfra1 and aadA1) and two Infantis (aadA1) isolates. The two Infantis isolates were multidrug resistant and harbored a large megaplasmid. Amplification of spvC and spvRA regions showed that all Enteritidis (n = 42), Typhimurium (n = 34), Choleraesuis (n = 3) and Dublin (n = 1) isolates carried the Salmonella virulence plasmid (pSV). We conclude that the classic serotyping method can be substituted by the multiplex PCR and, when necessary, sequencing of only one or two loci of the MLST scheme is a valuable tool to confirm the results. The effectiveness and feasibility of different typing tools is discussed.


Assuntos
Bacteriemia/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Humanos , Reação em Cadeia da Polimerase Multiplex , Salmonella enterica/genética
12.
MAbs ; 7(5): 820-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26192995

RESUMO

Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (~30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera.


Assuntos
Anticorpos Neutralizantes/imunologia , Antígeno CD11b/imunologia , Antígenos CD18/imunologia , Anticorpos de Domínio Único/imunologia , Antitoxina Tetânica/imunologia , Animais , Afinidade de Anticorpos/imunologia , Sítios de Ligação de Anticorpos/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Vaccine ; 33(5): 726-33, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25539804

RESUMO

Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a species naturally at risk.


Assuntos
Cervos , Príons/administração & dosagem , Príons/imunologia , Vacinas contra Salmonella/administração & dosagem , Doença de Emaciação Crônica/prevenção & controle , Administração através da Mucosa , Animais , Sangue/imunologia , Imunoglobulina A/análise , Imunoglobulina G/sangue , Príons/genética , Saliva/imunologia , Vacinas contra Salmonella/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Doença de Emaciação Crônica/imunologia
14.
Antimicrob Agents Chemother ; 58(11): 6528-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25136026

RESUMO

Antibiotic resistance, especially due to ß-lactamases, has become one of the main obstacles in the correct treatment of Salmonella infections; furthermore, antibiotic resistance determines a gain of function that may encompass a biological cost, or fitness reduction, to the resistant bacteria. The aim of this work was to determine in vitro if the production of the class B ß-lactamase VIM-2 determined a fitness cost for Salmonella enterica serovar Typhimurium. To that end the gene blaVIM-2 was cloned into the virulent strain S. Typhimurium SL1344, using both the tightly regulated pBAD22 vector and the natural plasmid pST12, for inducible and constitutive expression, respectively. Fitness studies were performed by means of motility, growth rate, invasiveness in epithelial cells, and plasmid stability. The expression of blaVIM-2 was accompanied by alterations in micro- and macroscopic morphology and reduced growth rate and motility, as well as diminished invasiveness in epithelial cells. These results suggest that VIM-2 production entails a substantial fitness cost for S. Typhimurium, which in turn may account for the extremely low number of reports of metallo-ß-lactamase-producing Salmonella spp.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Aptidão Genética/genética , Infecções por Salmonella/tratamento farmacológico , Salmonella typhimurium/patogenicidade , beta-Lactamases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Células CACO-2 , Linhagem Celular , Clonagem Molecular , Células Epiteliais/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética , Infecções por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , beta-Lactamases/biossíntese
15.
Infect Immun ; 82(4): 1465-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24421045

RESUMO

The nontyphoidal Salmonella enterica serovar Dublin is adapted to cattle but infrequently infects humans, very often resulting in invasive infections with high levels of morbidity and mortality. A Salmonella-induced intestinal acute inflammatory response is postulated as a mechanism to prevent bacterial dissemination to systemic sites. In S. enterica serovar Typhimurium, flagella contribute to this response by providing motility and FliC-mediated activation of pattern recognition receptors. In this study, we found 4 Salmonella enterica isolates, with the antigenic formula 9,12:-:-, that, based on fliC sequence and multilocus sequence type (MLST) analyses, are aflagellate S. Dublin isolates. Interestingly, all were obtained from human bloodstream infections. Thus, we investigated the potential role of flagella in the unusual invasiveness exhibited by S. Dublin in humans by analyzing flagellation and proinflammatory properties of a collection of 10 S. Dublin human clinical isolates. We found that 4 of 7 blood isolates were aflagellate due to significantly reduced levels of fliC expression, whereas all 3 isolates from other sources were flagellated. Lack of flagella correlated with a reduced ability of triggering interleukin-8 (IL-8) and CCL20 chemokine expression in human intestinal Caco-2 cells and with reduced early inflammation in the ceca of streptomycin-pretreated C57/BL6 mice. These results indicate that flagella contribute to the host intestinal inflammatory response to Salmonella serovar Dublin and suggest that their absence may contribute to its systemic dissemination through dampening of the gut immune response. Analysis of FliC production in a collection of cattle isolates indicated that the aflagellate phenotype is widely distributed in field isolates of S. Dublin.


Assuntos
Flagelos/fisiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/patogenicidade , Análise de Variância , Animais , Células CACO-2 , Ceco , Quimiocina CCL20/metabolismo , Feminino , Flagelina/genética , Flagelina/metabolismo , Humanos , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Infecções por Salmonella/patologia , Salmonella enterica/fisiologia , Especificidade da Espécie
16.
Springerplus ; 2: 640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349948

RESUMO

In developing countries, bacterial acute gastroenteritis continues to be an important cause of morbidity and mortality among young children. Salmonellosis constitutes a major cause of infectious enteritis worldwide, most of them associated to the consumption of contaminated food products. Traditionally, Salmonella has been classified in serovars based on varieties of O and H surface antigens. In the present work we generated and characterized a panel of anti-flagellin monoclonal antibodies (MAbs) in order to select antibodies useful for detecting the H surface antigen. Four different MAbs were obtained by somatic hybridization of splenocytes. We found two MAbs that recognised regions of flagellin conserved among different Salmonella serovars. Other two MAbs recognised structures restricted to Salmonella enterica sv. Typhimurium, being one of them suitable for agglutination tests. Using a diverse panel of S. enterica serovars with different H antigen varieties we confirmed that this MAb agglutinates specifically S. Typhimurium (antigenic formula: 4,12:i:1,2) or other serovars expressing flagellar factor i. In conclusion, we generated a valuable immunochemical tool to be used in simple assays for serotyping of epidemiologically relevant strains. The capacity to characterize specific strains and determine the primary sources of Salmonella contamination generate valuable information of the epidemiology of this microorganism, contributing to the improvement of public health.

17.
J Glob Antimicrob Resist ; 1(3): 143-148, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27873624

RESUMO

The objectives of this study were to investigate clinical isolates of Salmonella enterica serovar Typhimurium resistant to ß-lactam antibiotics, to characterise their mechanisms of antibiotic resistance and to evaluate the possible biological cost of expressing resistance genes. Two oxyimino-cephalosporin-resistant Salmonella isolates obtained from children with diarrhoea were characterised. The occurrence of plasmid-encoded blaCMY-2 genes was confirmed by molecular methods and conjugation assays; transcription levels were determined by quantitative real-time PCR (qRT-PCR). The genomic context of the ß-lactamases, replicon type and addiction systems were analysed by PCR. Genomic relatedness of both isolates was studied by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) assays. Growth curves, motility and invasiveness assays in Caco-2 cells were performed to analyse the bacterial fitness of both isolates. Both isolates carried a blaCMY-2-like allele in an IncI plasmid and belonged to the same MLST sequence type (ST19); nevertheless, they showed extensive differences in their PFGE profiles and virulotypes. Isolate STM709 appeared to lack the Salmonella virulence plasmid and displayed less motility and invasiveness in cultured cells than isolate STM910. qRT-PCR showed that isolate STM709 had higher blaCMY-2 mRNA levels compared with STM910. Altogether, the results suggest that a plasmid carrying blaCMY-2 could be disseminating among different clones of S. Typhimurium. Different levels of blaCMY-2 mRNA could have an effect on the fitness of this micro-organism, resulting in lower invasiveness and motility.

18.
Open Microbiol J ; 6: 5-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22371816

RESUMO

The Enteritidis and Dublin serovars of Salmonella enterica are closely related, yet they differ significantly in pathogenicity and epidemiology. S. Enteritidis is a broad host range serovar that commonly causes gastroenteritis and infrequently causes invasive disease in humans. S. Dublin mainly colonizes cattle but upon infecting humans often results in invasive disease.To gain a broader view of the extent of these differences we conducted microarray-based comparative genomics between several field isolates from each serovar. Genome degradation has been correlated with host adaptation in Salmonella, thus we also compared at whole genome scale the available genomic sequences of them to evaluate pseudogene composition within each serovar.Microarray analysis revealed 3771 CDS shared by both serovars while 33 were only present in Enteritidis and 87 were exclusive to Dublin. Pseudogene evaluation showed 177 inactive CDS in S. Dublin which correspond to active genes in S. Enteritidis, nine of which are also inactive in the host adapted S. Gallinarum and S. Choleraesuis serovars. Sequencing of these 9 CDS in several S. Dublin clinical isolates revealed that they are pseudogenes in all of them, indicating that this feature is not peculiar to the sequenced strain. Among these CDS, shdA (Peyer´s patch colonization factor) and mglA (galactoside transport ATP binding protein), appear also to be inactive in the human adapted S. Typhi and S. Paratyphi A, suggesting that functionality of these genes may be relevant for the capacity of certain Salmonella serovars to infect a broad range of hosts.

19.
Appl Environ Microbiol ; 77(21): 7740-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926214

RESUMO

Salmonellosis represents a worldwide health problem because it is one of the major causes of food-borne disease. Although motility is postulated as an important Salmonella virulence attribute, there is little information about variation in motility in natural isolates. Here we report the identification of a point mutation (T551 → G) in motA, a gene essential for flagellar rotation, in several Salmonella enterica serovar Enteritidis field isolates. This mutation results in bacteria that can biosynthesize structurally normal but paralyzed flagella and are impaired in their capacity to invade human intestinal epithelial cells. Introduction of a wild-type copy of motA into one of these isolates restored both motility and cell invasiveness. The motA mutant triggered higher proinflammatory transcriptional responses than an aflagellate isolate in differentiated Caco-2 cells, suggesting that the paralyzed flagella are able to signal through pattern recognition receptors. A specific PCR was designed to screen for the T551 → G mutation in a collection of 266 S. Enteritidis field isolates from a nationwide epidemic, comprising 194 from humans and 72 from other sources. We found that 72 of the 266 (27%) isolates were nonmotile, including 24.7% (48/194) of human and 33.3% (24/72) of food isolates. Among nonmotile isolates, 15 carried the T551 → G mutation and, significantly, 13 were recovered from food, including 7 from eggs, but only 2 were from human sources. These results suggest that the presence of paralyzed flagella may impair the ability of S. Enteritidis to cause disease in the human host but does not prevent its ability to colonize chickens and infect eggs.


Assuntos
Locomoção , Salmonelose Animal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enteritidis/isolamento & purificação , Salmonella enteritidis/fisiologia , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Galinhas , Ovos/microbiologia , Células Epiteliais/microbiologia , Flagelos/genética , Humanos , Mutação Puntual , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidade , Virulência
20.
Appl Environ Microbiol ; 76(20): 6812-20, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20802078

RESUMO

Nontyphoidal salmonellae are major causes of food-borne disease worldwide. In Uruguay, Salmonella enterica serovar Enteritidis was the most commonly isolated serovar throughout the last decade, with a marked epidemic period between 1995 and 2004. In a previous study, we conducted comparative genomics of 29 epidemic-spanning S. Enteritidis field isolates, and here we evaluated the pathogenic potential of the same set of isolates using several phenotypic assays. The sample included 15 isolates from human gastroenteritis, 5 from invasive disease, and 9 from nonhuman sources. Contrary to the genetic homogeneity previously observed, we found great phenotypic variability among these isolates. One-third of them were defective in at least one assay, namely, 10 isolates were defective in motility, 8 in invasion of Caco-2 cells, and 10 in survival in egg albumen. Twelve isolates were tested for invasiveness in 3-day-old chickens, and five of these were significantly less invasive than the reference strain. The two oldest preepidemic isolates were reduced in fitness in all assays, providing a plausible explanation for the previous negligible incidence of S. Enteritidis in Uruguay and supporting the view that the introduction or emergence of a more virulent strain was responsible for the marked rise of this serovar. Further, we found differences in fitness among the isolates which depended on the source of isolation. A total of 1 out of 14 isolates from human gastroenteritis, but 6 out of 13 isolates from other sources, was impaired in at least two assays, suggesting enhanced fitness among strains able to cause intestinal disease in humans.


Assuntos
Salmonelose Animal/epidemiologia , Salmonelose Animal/microbiologia , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella enteritidis/classificação , Salmonella enteritidis/fisiologia , Animais , Células CACO-2 , Galinhas , Modelos Animais de Doenças , Ovos/microbiologia , Células Epiteliais/microbiologia , Humanos , Locomoção , Viabilidade Microbiana , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia , Salmonella enteritidis/genética , Salmonella enteritidis/isolamento & purificação , Uruguai , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...